
MARIST College Computer Graphics
Fall 2013 CMSC446:MSCS555

Team Project II: Chess Game Visualizer

Demonstration Date: Wednesday, December 11 @ 1530

Submission Format: Electronic via iLearn

Notes: Each team shall comprise two students. Only one submission is required for each team.

Summary

The goal of this application is to implement a Chess visualizer that presents a realistic rendering of
a chess game in action.

Requirements

The application must communicate with a remote server to receive each move in the game and
subsequently animate the Board and Pieces appropriately. The details of the communication
protocol and message format will be given later.

You should plan to include detailed models for each object in your visualization at minimum the–
board and two complete sets of game pieces, but possibly including additional visual elements.

Each change in the state of the chess game should be accompanied by an appropriate smooth
animation the precise nature of this animation is up to you. It may be a simple sliding or floating–
of a chess piece from one square to another, or it may be a more complex animation sequence if
time permits. In any event, you should be sure to avoid having one piece move through another –
that is, the pieces should act as solid objects.

User controls should permit opening/closing a connection to the server, changing the camera
properties, selecting a theme for the board and pieces, and quitting the application. Camera
changes should be smooth (not instant), and at least two visual themes should be provided.

You must have detailed shading of your scene, with at least two distinct types of light sources. The
precise details of each light (type, location, color, etc.) is left to your artistic discretion. Basic
smooth shading should be performed in the fragment stage using the typical Blinn-Phong method.
If you wish to implement some form of artistic shader (e.g., Toon) instead, you are free to do so,
but please clear it with your instructor first. You must use at least two texture images applied to at
least two objects one for each of the “themes” mentioned above.–

All objects should be managed using a scene graph via the THREE.JS library.

In addition to these basic modeling/shading/animation requirements, you must also incorporate a
variety of other techniques, including but not necessarily limited to secondary shaders (e.g., –
bump), additional textures, collision detection/physics, complex animations, shadow mapping,
particle effects, etc. The highest grades are not attainable without some combination of these
additional features.

Of course, coding style, modularity, and other best practices also factor into the project grade.

MARIST College Computer Graphics
Fall 2013 CMSC446:MSCS555

Documentation

All software must include extensive and appropriate embedded documentation (i.e., regular and
Javadoc or similar comments). A brief but complete user guide must also accompany your project.

Each class and public member must have Javadoc or similar style comments; each global function
or variable must have regular comments.

Every control structure or block of code in excess of 4 lines must have at least a one-line comment
associated with it.

The User Guide must cover all methods of input, any rules of operation (input restrictions, input
sequences, game logic, etc.), file formats, and how to interpret the output. The document must
be no more than 4 pages in length.

Grading

A breakdown of the individual components of the application and their weights is given below.

 Modeling & Materials 15%

 Transformations & Animation 20%

 Cameras & Viewing 10%

 Lights & Shaders 10%

 Texture Mapping 10%

 User Interaction 10%

 Query Server & Handle Response 10%

 Overall Design & Quality 10%

 Additional/Advanced Features 5%

Running Your Application

When using Chrome, you may need to launch the browser with the disable-web-security– flag
if you are simply loading the files from your local disk. You can run a local Web server if you wish
in order to avoid this problem.

For our final demonstrations, we will run all the projects from a central Web server located at
10.11.18.65 on the Marist network. Each team has a single user account via which they can
upload all their project files to the server using SFTP.

Each team's login name and the default password which you should change right away are – –
provided under Resources on iLearn. If you should have any trouble connecting to the server,
please let me know immediately.

Each account has a www directory for the purpose of hosting your THREE.JS applications. Please
upload your files into this www directory.

MARIST College Computer Graphics
Fall 2013 CMSC446:MSCS555

Client-Server Communications

Your program should use a text input field to obtain a GAMEID number from the user. You can
query the Chess Server's REST API via AJAX in order to obtain the game history. I have reproduced
one of the most famous chess matches in history, Kasparov vs Topalov 1999, in order to provide
you with a sample game against which you can test your graphical application.

Given an HTTP GET request with the following URL: http://www.bencarle.com/chess/cg/340

you will receive a response in the form of a JSON string, such as
{

 "blacktime": 108.887688,

 "gameover": true,

 "lastmovenumber": 87,

 "moves": [

 "Pe2e4", "Pd7d6", "Pd2d4", "Ng8f6", "Nb1c3", "Pg7g6", "Bc1e3", "Bf8g7", "Qd1d2", "Pc7c6",

 "Pf2f3", "Pb7b5", "Ng1e2", "Nb8d7", "Be3h6", "Bg7h6", "Qd2h6", "Bc8b7", "Pa2a3", "Pe7e5",

 "Ke1c1", "Qd8e7", "Kc1b1", "Pa7a6", "Ne2c1", "Ke8c8", "Nc1b3", "Pe5d4", "Rd1d4", "Pc6c5",

 "Rd4d1", "Nd7b6", "Pg2g3", "Kc8b8", "Nb3a5", "Bb7a8", "Bf1h3", "Pd6d5", "Qh6f4", "Kb8a7",

 "Rh1e1", "Pd5d4", "Nc3d5", "Nb6d5", "Pe4d5", "Qe7d6", "Rd1d4", "Pc5d4", "Re1e7", "Ka7b6",

 "Qf4d4", "Kb6a5", "Pb2b4", "Ka5a4", "Qd4c3", "Qd6d5", "Re7a7", "Ba8b7", "Ra7b7", "Qd5c4",

 "Qc3f6", "Ka4a3", "Qf6a6", "Ka3b4", "Pc2c3", "Kb4c3", "Qa6a1", "Kc3d2", "Qa1b2", "Kd2d1",

 "Bh3f1", "Rd8d2", "Rb7d7", "Rd2d7", "Bf1c4", "Pb5c4", "Qb2h8", "Rd7d3", "Qh8a8", "Pc4c3",

 "Qa8a4", "Kd1e1", "Pf3f4", "Pf7f5", "Kb1c1", "Rd3d2", "Qa4a7"

],

 "whitesturn": false,

 "whitetime": 120.588292

}

Your application must read and parse this response and be able to reproduce the entire sequence
of moves in the game. You must also display a countdown of the active player's remaining time.

It will be necessary to poll the game server at some short, regular interval in order to determine
whether any new moves have been made. Your application should update live while a game is
being played, and it should also support the ability to replay an entire game from its beginning.

Note that some moves have consequences that are not encoded in the response. For example:

• Black's 8th move Bg7h6 captures White's bishop. Your application should detect this and
remove the captured bishop from the board. (You may choose to display it off to the side.)

• White's 11th move Ke1c1 is a special castling move that allows two pieces to move at once.
In this case, the King castles queenside by moving two spaces while the Queen's Rook
jumps over the King. Note that Black's 13th move Ke8c8 also a castling move.

• Two other special Chess moves that are not demonstrated in this sample game include
promotion and en passant. Your program should be prepared to handle these moves.

http://www.chessgames.com/perl/chessgame?gid=1011478
http://www.bencarle.com/chess/cg/340
http://en.wikipedia.org/wiki/En_passant
http://en.wikipedia.org/wiki/Promotion_(chess)
http://en.wikipedia.org/wiki/Castling

MARIST College Computer Graphics
Fall 2013 CMSC446:MSCS555

On AJAX, REST, & JSON

AJAX is a relatively simple technique that can be implemented from scratch or provide via
framework such as jquery or mootools.

http://eloquentjavascript.net/chapter14.html

http://api.jquery.com/jQuery.ajax/

http://mootools.net/docs/core/Request/Request

We will be using AJAX to send a simple HTTP request to the Chess Server, which provides a
RESTful API for querying the state of a particular game. Just make sure that you send your request
using the GET method of HTTP and that you parse the response as plain text (instead of HTML or
XML).

The response will be a JSON string, which can be parsed converted into a JavaScript object easily
enough via the JSON.parse() function. Once you have the resulting program object, you can
operate on it in the same way you would any other JavaScript object. The list of game moves is
simply a JavaScript Array, so you can iterate over all the moves in the usual way.

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse

Proposed Timeline

Oct 23 Form/select project teams–

Oct 30 Determine work plan and delegate tasks–

Nov 6 Begin implementation with board and hard-code pieces–

Nov 13 Begin testing client-server communication and parsing response–

Nov 20 Animate the movement of pieces/lighting/view–

Dec 4 Add texture mapping and any, additional features–

Dec 11 Tested, debugged, ready for demo–

http://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/parse
http://mootools.net/docs/core/Request/Request
http://api.jquery.com/jQuery.ajax/
http://eloquentjavascript.net/chapter14.html

	Team Project II: Chess Game Visualizer
	Summary
	Requirements
	Documentation
	Grading
	Running Your Application
	Client-Server Communications
	On AJAX, REST, & JSON
	Proposed Timeline

